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A B S T R A C T   

Safety performance functions (SPFs) are the main building blocks in understanding the relationships between 
crash risk factors and crash frequencies. Many research efforts have focused on high-volume roadways that 
typically experience more crashes. A few studies have documented SPFs for non-federal aid system (NFAS) roads 
including rural minor collectors, rural local roads, and urban local roads. NFAS roads are characterized by unique 
features such as lower speeds, and shorter segment lengths, and they usually experience fewer crashes given the 
low exposure of these roads. As a result, there is a clear need to investigate the associated safety issues of NFAS 
roadways and generate distinct SPFs for them. The main objective of this study is to bridge the gap in the 
literature and develop SPFs for NFAS roads. This study examined the application of traditional negative binomial 
and zero-favored negative binomial models (i.e., negative binomial-Lindley). Both groups of models were 
formulated by different variance and dispersion structures. Using crash, roadway inventory, and traffic volume 
data from 2014 to 2018 in Virginia, the results showed that the NB-L models perform better than the traditional 
NB models. Furthermore, an appropriate variance structure along with a reasonably chosen dispersion function 
can further improve the model performance.   

1. Introduction 

Non-federal aid system (NFAS) roads are categorized into three 
functional classes: rural minor collectors (6R), rural local (7R), and 
urban local roads (7U). These roadways are not considered high-volume 
roads, but they account for more than 75% of the total roadway mileage 
in the country. As a result, evaluating the safety performance of these 
roadways is of high importance. 

A safety performance function (SPF) is a statistical model (more 
specifically a crash-frequency model) that estimates the average crash 
frequency for a specific facility type under certain base conditions (HSM, 
2010). In general, SPFs are developed using roadway characteristics and 
observed crash data at facilities of the same type with similar 
geographical and geometrical characteristics over a certain period of 
time. Materials included in part C of the Highway Safety Manual (HSM) 
intend to provide a basic understanding of predictive methods to esti-
mate the expected average crash frequency of a facility (segment or 
intersection) using roadway characteristics, such as annual average 

daily traffic (AADT), segment length, number of lanes, etc. However, the 
HSM only provides SPFs for three facility types, (1) rural two-lane 
two-way roads, (2) rural multi-lane highways, and (3) urban and sub-
urban arterials. These roadways are categorized as high-volume roads 
that are more likely to pose safety challenges. Compared to high-speed 
and high-volume roadways, fewer research studies have been done to 
develop SPFs for lower functional classes. This is primarily attributed to 
inadequate or unavailable traffic information about these roads. The 
high cost and time-consuming task of data collection can limit local 
agencies ability to conduct safety improvement programs for lower 
functional classes. However, as of 2016, the U.S. Department of Trans-
portation requires states to collect traffic volume information for all 
public paved roads, including both federal aid system (FAS) and NFAS 
roads. Having AADT data collected or estimated from the short term 
count or permanent sites, regardless of the sampling techniques or 
estimation method, can significantly clear the way to conduct 
data-driven safety analysis and introduce advanced measures to eval-
uate the safety performance of NFAS roads. 
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Although not much research has focused on the development of the 
SPFs for NFAS roads, some studies have attempted to analyze the safety 
issues related to low-volume roads, which are a large part of NFAS roads 
(Das et al., 2019). Zegeer et al. (1994) attempted to quantify the effect of 
roadway width on low-volume (AADT < 2000 vehicle per day or vpd) 
rural roadway crashes. They found that wider roadways, the presence of 
a shoulder, and paving roadways with volume higher than 250 vpd can 
significantly improve safety on rural low-volume roads. Stamatiadis 
et al. (1999) tried to determine the influential factors of crashes on 
low-volume roadways. They observed that crash frequency on 
low-volume roadways is a function of the same parameters as found 
effective in other roadway functional classes. Cook (2010) employed 
three different segmentation methods, and for each method established 
four different SPFs for very low-volume roadways, split into four classes 
(paved 1–99 vpd, paved 100–400 vpd, unpaved 1–99 vpd, and unpaved 
100–400 vpd). Roadway length, AADT, lane width, shoulder width, 
shoulder type, and terrain were the variables that the authors initially 
considered to develop SPFs. Dell’Acqua and Russo (2011) sub-
categorized low-volume (AADT < 1000 vpd) rural roads into rolling/flat 
and mountainous terrain and developed two separate models to predict 
the number of crashes as a function of environmental, geometrical, and 
roadway characteristics. The authors found that lowering speed limit 
and changing curvature rate and roadway width might lower crash 
density on low-volume roads. Stapleton et al. (2019) utilized the mixed 
effect negative binomial regression model to develop SPFs for rural 
low-volume intersections (major AADT < 2000 vpd). They compared 
the developed SPFs with the base models reported in the HSM and 
observed that the HSM models overpredict crash frequency at both 
four-leg and three-leg stop-controlled intersections. Using crash data 
and estimated traffic volumes from the North Carolina local network, 
Das et al. (2019) aimed to predict crash frequency for each category of 
NFAS roads, separately. This study developed SPFs for 6R, 7R, and 7U 
road types, as a function of roadway length and traffic volume data. 
They also found that AADT estimation error can affect the predicted 
number of crashes occurring on these roadways. 

As mentioned above, the HSM’s SPFs are limited to specific high- 
volume and high-speed roadways and may not be transferable to 
lower road classes. On the other hand, previous studies did not perform 
an in-depth investigation to quantify the safety performance of the NFAS 
roads. To the best of our knowledge, except for the study conducted by 
Das et al. (2019), no other studies have attempted to develop distinct 
SPFs for NFAS roads, but rather for low-volume roadways that may or 
may not be classified as the same road type as NFAS roadways. 
Furthermore, previous studies utilized traditional count models to 
develop SPFs for low-volume roadways and did not examine more 
advanced and innovative models that are capable of accounting for 
unique characteristics of crash data, such as having a large proportion of 
zeros in the dataset. Also, NFAS roads are characterized by unique fea-
tures such as lower speeds (35–55 and 20–45 mph for collector and local 
roads, respectively), shorter segment lengths, and fewer crashes given 
the exposure (i.e., data characterized by low sample mean values). 
Therefore, there is a clear need to further investigate the safety perfor-
mance of the NFAS roads and generate distinct SPFs for these roadways 
using more advanced models for comparison with traditional model 
formulations. 

Generalized linear models, and more specifically, the negative 
binomial (NB) regression models have been extensively used in SPF 
development. The negative binomial or Poisson-Gamma mixture dis-
tribution is the generalization of the Poisson distribution and has been 
considered the most popular model in highway safety (Lord and Man-
nering, 2010; Lord et al., 2021). The NB distribution eases the 
assumption of equality of the mean and variance held in the Poisson 

regression model. In general, the negative binomial model allows for the 
variance to be higher than the mean in order to capture the variation in 
the dataset. This ability can be further improved by changing the vari-
ance and dispersion structure, or mixing the NB distribution with other 
distributions. In the following, each of these improvements is discussed 
in detail. 

• Dispersion structure: the dispersion parameter in the NB model al-
lows for the variance to be greater than the mean by forming a 
quadratic relationship between the mean and the variance. Although 
past studies assumed that the dispersion parameter is invariant of 
roadway features, recent findings confirm that the dispersion 
parameter varies from site to site and is dependent upon site char-
acteristics such as segment length and AADT (Geedipally et al., 2009; 
Lord and Park, 2008; Cafiso et al., 2010). In another study, Lord and 
Park (2008) conducted an Empirical Bayes (EB) method using both 
fixed and varying dispersion parameters to rank hazardous sites. 
They employed different functional forms of the dispersion param-
eters in the NB models and concluded that the varying dispersion 
parameter provides a better statistical fit. Cafiso et al. (2010) 
investigated the association between rural roadway length and the 
dispersion parameter and found that the dispersion parameter vari-
ation is more significant for shorter segments. Also, Geedipally et al. 
(2009) used three different datasets to empirically examine the effect 
of the varying dispersion structures. They evaluated ten different 
structures as functions of roadway length and AADT. The authors 
concluded that selecting a suitable functional form and an appro-
priate combination of covariate sets for the dispersion structure 
greatly depends on the dataset being used. In another study, Meng 
et al. (2020) attempted to develop SPFs with both fixed and varying 
dispersion parameter for unsignalized intersections in Texas. The 
authors found that similar to the segment SPFs, intersection SPFs are 
also improved when using the varying dispersion parameters. 

• Variance structure: besides the relationship between roadway char-
acteristics and the dispersion parameter, the type of mean-variance 
relationship that the dispersion parameter makes is of importance 
as well. The dispersion parameter in the NB model allows for the 
variance to be higher than the mean by forming a quadratic rela-
tionship between the mean and variance. Different variance struc-
tures lead to different parameterizations of the NB distribution. 
Cameron and Trivedi (2013) proposed two popular forms of the NB 
distribution, called NB-1 and NB-2 (the latter usually referred to as 
NB), in which the digit refers to the exponent of the mean value 
multiplied by the dispersion parameter in the mean-variance equa-
tion. Pei et al. (2011), Mehta and Lou (2013) and Wang et al. (2019) 
employed both the NB-1 and NB-2 to model crash frequency for 
different severity levels and to develop SPFs, respectively. They all 
concluded that the NB-1 does not perform better than the NB-2, 
which supported the findings of Lord et al. (2012), indicating that 
the NB-1 is less flexible to capture the large variations existing in the 
crash data. Both NB-1 and NB-2 parameterizations are nested in an 
unrestricted general model, entitled as NB-P, which does not restrict 
the variance structure (Greene, 2008). Ismail and Zamani (2013) 
assessed the application of different variance structure of different 
count models, such as the Poisson and NB model, in the over and 
under dispersed data condition. They concluded that the NB-P model 
outperforms other NB parameterizations. Also, Wang et al. (2019) 
found that the NB-P provides more flexibility to the model, and 
hence is preferable over the NB-1 and NB-2 when developing SPFs for 
rural intersections. They concluded that the variance structure of the 
NB-P model could even capture some of the variations in the 
dispersion parameter. 
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• Mixture distribution: although the NB regression model accounts for 
the built-in dispersion in crash data, crash datasets are naturally 
characterized by unique features such as having a large number of 
zeros or a heavy tail, which the traditional NB models cannot effi-
ciently deal with. To overcome this problem, Lord and Geedipally 
(2011) and Geedipally et al. (2012) examined the application of the 
NB and Lindley mixture distribution (NB-L) introduced by Zamani 
and Ismail (2010), in crash data analysis.1 They found that the NB-L 
model, while preserving the NB characteristics, provides a better fit 
compared to the traditional NB models for the datasets suffering 
from a large proportion of zeros or high dispersion problems. 

All the above-mentioned regression models could be estimated in 
either frequentist or Bayesian framework. The superiority of the 
Bayesian paradigm has been documented in the literature from different 
points of view. First of all, when limited data is available, the full 
Bayesian (FB) method can yield unbiased estimates by incorporating 
common Beliefs (prior distribution) about the variable of interest into 
the analysis (Heydari et al., 2014; Lord and Miranda-Moreno, 2008). 
Also, despite frequentist analysis, which requires a considerable number 
of repeated random trials to build the confidence intervals, Bayesian 
methods represent the hypothesis uncertainty in a natural probabilistic 
way and attach it to the modeling procedure. Moreover, as the hierarchy 
level grows and the data structure gets more complex, the frequentist 
method needs more computational effort to find a closed-form of the 
distribution or employ a simulation-based solution; however, Bayesian 
methods can take advantage of both, Bayes theorem and its hierarchical 
nature to easily draw samples from the posterior distribution of the 
parameter of interest using the Markov Chain Monte Carlo (MCMC) 
simulation (Heydari et al., 2014; Lord et al., 2021). Full Bayesian 
paradigm has been extensively used in various settings including the 
hierarchical Poisson model (Pawlovich et al., 2006), NB model (Heydari 
et al., 2014; Farid et al., 2017), Poisson log-normal model (Aguer-
o-Valverde and Jovanis, 2009), and NB-L model (Lord and Geedipally, 
2011; Geedipally et al., 2012) for various crash analysis such as crash 
frequency prediction, site ranking, and SPF development. 

1.1. Study objective 

The main objective of this study is to apply different forms of count 
models to develop SPFs for NFAS roads. Given the share of NFAS roads 
from the total roadway mileage, accurately quantifying the safety issues 
of these roadways can considerably contribute to more robust safety 
analysis and effective decision making. The next section describes the 
formulation and hierarchical representation of the NB models that were 
examined in this study. 

2. Methodology 

The most common methods that are used by researchers to develop 
SPFs are the Poisson and Poisson-gamma regression models (Lord et al., 
2005). The Poisson-gamma mixture or NB distribution is the general-
ization of the Poisson distribution, which eases the assumption that the 
mean and variance are equal by introducing the dispersion parameter to 
the model. As mentioned in the previous section, both the variance 
structure and the dispersion parameter can be formulated in different 

ways leading to the various NB parameterizations. The following sub-
section discusses the various NB formulations derived from different 
variance structures. Then, the NB-L model is presented, which in-
troduces more flexibility to the traditional NB model. The last subsection 
presents different functional forms of the dispersion structure to better 
capture the variation in dispersion parameter across the road segments. 

2.1. NB-2 

The NB-2 is the most common form of the NB models. The hierar-
chical representation of the NB-2 is described as follows (Heydari et al., 
2014): 

Yi ∼ Poisson(λi)

λi = μiri
ri ∼ Gamma(ϕ,ϕ)

(1)  

where ϕ is the inverse dispersion parameter (i.e., α = 1
ϕ is the dispersion 

parameter), and μi = exp(βiXi) is the mean response crash frequency 
which is an exponential function of roadway characteristics. As seen, the 
NB model allows for inter-observation heterogeneity by multiplying a 
gamma distributed error term, ri, to the mean function. After integrating 
the prior out of the Poisson-gamma joint distribution, we obtain the 
following probability density function with the mean, and variance 
functions as follows: 

P(Y|ϕ, μ) = Γ(ϕ + yi)

Γ(ϕ)yi

(
ϕ

ϕ + μi

)ϕ( μi

μi + ϕ

)yi

(2)  

E(yi) = μi (3)  

Var(yi) = μi +
μ2

i

ϕ
(4)  

As described in Eq. (4), the NB-2 model assumes that there is a quadratic 
association between the mean and the variance through the inverse 
dispersion parameter. 

2.2. NB-1 

The other commonly used formulation of the NB model is shown in 
Eq. (5). The NB-1 model assumes that there is a constant ratio linking the 
mean and the variance of the crash frequencies. This could be achieved 
by replacing the inverse dispersion parameter, ϕ, with ϕμi in Eq. (4). The 
NB-2 model assumes that there is only one fixed dispersion parameter in 
the entire dataset, while the NB-1 adjusts the dispersion parameter for 
each site, individually. This adjustment leads to a different parameter-
ization of the NB model which also preserves the conditional mean. The 
probability density function, mean, and variance of the NB-1 model can 
be written as follows (Greene, 2008): 

P(Y|ϕ, μ) = Γ(ϕμi + yi)

Γ(ϕμi)yi

(
ϕμi

ϕμi + μi

)ϕμi
(

μi

μi + ϕμi

)yi

(5)  

E(yi) = μi (6)  

Var(yi) = μi +
μ2

i

ϕμi
= μi +

μi

ϕ
(7)  

2.3. NB-P 

A more general type of the NB model is the NB-P model, which does 
not constrain the mean-variance relationship. As seen in Eq. (10), the 
exponent of the mean, μi, in the mean-variance relationship can take any 
value. Similar to the NB-1 model, this formulation also makes an 
adjustment to the dispersion parameter of each site while maintaining 
the conditional mean. The probability density function, mean and 

1 The NB-L has been proposed as an alternative to the application of zero- 
inflated (ZI) models for handling datasets with a large percentage of zero re-
sponses. The NB-L model offers a single mean function that is never equal zero, 
which is not the case for the ZI model. This and other limitations have not only 
been documented in highway safety (Lord et al., 2005, 2007), but in various 
other fields, such as environmental science, substance abuse, criminology and 
social sciences. Additional discussion can be found in Chapter 3 of Lord et al. 
(2021). 
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variance of the NB-P distribution can be derived as follows (Greene, 
2008): 

P(Y|ϕ, μ) = Γ(ϕμ2− p
i + yi)

Γ(ϕμ2− p
i )yi

(
ϕμ2− p

i

ϕμ2− p
i + μi

)ϕμ2− p
i
(

μi

μi + ϕμ2− p
i

)yi

(8)  

E(yi) = μi (9)  

Var(yi) = μi +
μ2

i

ϕμ2− p
i

= μi +
μp

i

ϕ
(10)  

2.4. NB-L 

To deal with the unique and problematic characteristics of crash data 
such as excess zeros and having a long heavy tail, extensions of the NB 
model have been proposed, which offer a more flexible structure to the 
original model in order to deal with problematic datasets. In this regard, 
Zamani and Ismail (2010) proposed the use of the mixture of NB and 
Lindley distribution to analyze a highly dispersed dataset characterized 
by a large number of zeros and a heavy tail. This model, also referred to 
as a multi-parameter model (Lord and Geedipally, 2018), under a hi-
erarchical Bayesian framework can be described as follows (Geedipally 
et al., 2012): 

P(Y = y, μi,ϕ|ϵ) = NB(y;ϕ, ϵμi)

ϵ ∼ Lindley(θ) (11)  

where θ is the Lindley distribution parameter. The Lindley distribution is 
a mixture of the exponential and gamma distribution (Zamani and 
Ismail, 2010). The probability density function and the mean structure 
of the Lindley distribution can be written as follows: 

P(E = ϵ|θ) ∼
θ2

θ + 1
(1 + ϵ)e− θx; θ > 0 (12)  

E(ϵ) =
θ + 2

θ(θ + 1)
(13)  

The NB-L formulation then could be derived by integrating the Lindley 
prior out of the NB and Lindley joint distribution: 

P(Y = y, μ,ϕ, θ) =
∫

NB(y;ϕ, ϵμ)Lindley(ϵ, θ)dϵ (14)  

The conditional mean and variance of the NB-L distribution then can be 
given as: 

E(yi) = μiE(ϵ) = μi
θ + 2

θ(θ + 1)
(15)  

Var(yi) = μi
θ + 2

θ(θ + 1)
+ μ2

i

(
2(θ + 3)
θ2(θ + 1)

)(
1 + ϕ

ϕ

)

−

(

μi
θ + 2

θ(θ + 1)

)2

(16)  

As seen in Eq. (16), despite the NB-1, NB-2, and NB-P models (from now 
on referred to as traditional NB models), in which the variation is only 
explained by the dispersion parameter, part of the variability in the NB-L 
model is captured by the mixed Lindley distribution. This could offer 
even more flexibility to the model to capture further variations in the 
dataset. Similar to the traditional NB models, the NB-L can also be 
formulated with different variance structures. The NB1-L, NB2-L, and 
NBP-L are the counterparts of the traditional NB models, which take 
advantage of two sources of variation, the dispersion parameter, and the 
mixed Lindley distribution. Similar to the NB-P, the NBP-L is the most 
general formulation of the NB-L models. Given ki = ϕμ2− p

i , the hierar-
chical representation of the NBP-L model could be formulated as 
follows: 

P(Y = y, μi, ki|ϵ) = NB(y; ki, ϵμi)

ϵ ∼ Lindley(θ) (17)  

2.5. Dispersion parameter functional form 

So far, six NB models with different parameterizations and different 
variance structures have been discussed. Each functional form of the NB 
could be formulated with a fixed or varying dispersion parameter. In this 
study, four different parameterizations of the inverse dispersion 
parameter (ϕ) were evaluated. These functional forms were selected 
according to the best formulations proposed by Geedipally et al. (2009). 
In addition, Cafiso et al. (2010) mentioned that in shorter segments, 
variability of the dispersion parameter matters more. Also NFAS roads 
are basically characterized by short segment lengths. Consequently, this 
study ensured that segment length is included in all the functional forms 
selected from the ones proposed by Geedipally et al. (2009). For all the 
six models, a fixed, and the following functional forms of the inverse 
dispersion parameter, ϕ, were modeled and examined: 

ϕ = eη0 *AADTη1
i *Lη2

i (18)  

ϕ = eη0 *AADTη1
i *Li (19)  

ϕ = eη0 *Lη2
i (20)  

ϕ = eη0 *Li (21)  

where the η’s are the parameters needed to be estimated and L is the 
segment length. 

It should be pointed out that the varying dispersion function may not 
be needed as the number of parameters used with the mean function 
increases. Mitra and Washington (2007) indicated that as the mean 
function gets better defined, the dispersion function becomes less 
structured or may even become fixed for well-defined mean functions. 
However, recent research on this topic by Zou et al. (2014) indicates that 
the varying dispersion function may be data dependent rather than 
dependent on the mean function. Even with a well-defined mean func-
tion, the variance was still structured and dependent on the covariates 
included in the model according to the dataset used in their study. 

2.6. Parameter estimation 

To generate valid posterior inferences, a full Bayesian approach was 
utilized. The FB method can incorporate all the information and prior 
knowledge into a single hierarchical model and yield robust estimates 
even when limited data is available. Since the Lindley distribution is not 
a standard distribution to draw samples from, a simpler formulation of 
the NB-L was used. According to this formulation, the Lindley distri-
bution could be parameterized as a sum of two gamma distributions with 
the mixture components following the Bernoulli distribution. The 
equivalent hierarchical representation of the Lindley distribution can be 
shown as follows (Zamani and Ismail, 2010): 

ϵ ∼ Gamma(1 + z, θ)

z ∼ Bernoulli
(

1
1 + θ

) (22)  

Moreover, the FB method requires to specify the prior distribution on all 
the unknown hyper-parameters to combine the data likelihood with the 
past evidence. This study assumed a non-informative normal prior for 
the regression coefficients of the mean and the varying dispersion 
function, and a gamma prior on the fixed dispersion parameter, 1/ϕ. 
Furthermore, priors should be chosen to preserve the identifiability of 
the model. In the NB-L model, as seen in Eqs. (15) and (16), both con-
ditional mean and variance are adjusted by the Lindley parameter, θ. As 
a result, expectation of ϵ should be equal to one to preserve the 
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conditional mean and ensure the identifiability issue. As suggested in 

Shaon et al. (2018) and Geedipally et al. (2012), a Beta 
(

N
3,

N
2

)

would be 

a good prior distribution on (1/1 + θ) since it guarantees E(ϵ) = 1, and is 
also relevant to the likelihood function through the parameter N 
(number of observations). 

Having specified the hierarchical joint model, we can draw random 
samples from the posterior distribution of the unknown parameters 
using the MCMC method. Depending on the availability of the full 
conditional distribution of the unknown parameter given the other pa-
rameters, Gibbs sampling method or otherwise, Metropolis-Hasting al-
gorithm can be used to draw random samples from the posterior 
distribution. In this study, an open-source R package, called “rjags”, was 
used to conduct MCMC analysis (Plummer et al., 2016). All the proposed 
models were implemented in the Bayesian framework. A total of three 
Markov chains, each containing 50,000 iterations, were run to make 
sure the convergence is achieved. The first 10,000 samples of each chain 
were considered as burn-in samples, and the remaining samples were 
used to estimate the unknown coefficients. Also, to mitigate the possible 
sample auto-correlation, out of three successive samples, only one 
sample was stored for estimation. 

3. Data description 

Virginia roadway information, traffic volume, and crash data from 
the Virginia Department of Transportation (VDOT) were gathered, 
processed, and integrated in order to develop SPFs for NFAS roads. 
Roadway inventory attributes such as lane width, shoulder width, 
number of lanes, etc., were, unfortunately, missing for a considerable 
number of segments. It is important to note that the data used in this 
study are collected from NFAS roadways which are mostly known as 
local roadways with low volume (2000 vpd or lower). Low-volume 
roadway inventory data are not usually well maintained and there are 
many missing geometric data such as horizontal and vertical curvature, 
shoulder width, etc. The other possible covariates available in the 
dataset were the percentage of trucks, and the percentage of buses in the 
roadways, which turned to be insignificant in all the regression models. 
The only reliable and available variables were segment length and 
AADT, which match with the basic variables used by the HSM. So, this 
study used flow-only models to make SPFs similar to the ones found in 
the HSM. Out of 92,834 reported crashes and 117,863 roadway infor-
mation collected from 2014 to 2018 (latest dataset available), 3708 
NFAS roadways, and corresponding 14,212 crashes were identified. 
Finally, after excluding the missing records, outliers, roadways with 
low-quality AADT counts (count estimates labeled as poor quality by the 
VDOT), and intersection related crashes, the final database, including a 

five-year period information on 2598 segments and 5856 crashes was 
obtained. Nearly 37% of the roadways did not experience any crash 
during the five years. Table 1 present the summary statistics of the input 
data that was used to develop SPFs. Descriptive statistics are summa-
rized for both categorized data (based on the roadway functional clas-
ses), and all NFAS roads. 

4. Modeling results 

This section describes the details of the SPF modeling results. In total, 
six count models, including the NB-1, NB-2, NB-P, NB1-L, NB2-L, and 
NBP-L, each with five different dispersion structures, were developed 
and run. Segment length and AADT were included in the SPF models as 
the possible covariates. Segment length was considered as a separate 
covariate rather than an offset since its estimate was statistically 
different from one. It should be pointed out that, even though this study 
only used segment length and AADT, the omitted-variable bias is not 
critical in this study since the models were compared using the same 
dataset and functional form (i.e., the link between the dependent and 
independent variables). Also, to make the MCMC process faster and 
overcome the poor convergence resulting from the multicollinearity 
issue (Shaon et al., 2018), the standardized covariates were input for 
estimation and then transformed back to the original scale. 

Tables 2–4  summarize the estimation results for each NB model with 
fixed, AADT and length dependent, and length-only dependent disper-
sion structure, respectively. The first and second part of each table 
provides estimates for the mean function coefficients, βs, and the 
dispersion function coefficients, ηs, respectively. For the models asso-
ciated with a fixed dispersion structure, the inverse dispersion param-
eter is also reported only for those models that follow the original NB 
distribution structure without any adjustment to the dispersion structure 
(i.e., NB2 and NB2-L). The last part demonstrates the performance 
evaluation metrics for evaluation and comparison purposes. 

This study used the Bayesian counterpart of the confidence interval, 
credible interval, to test the significance of the parameters. The co-
efficients, which their highest posterior density credible interval (HPD 
credible interval) included zero at 5% level, were underlined in 
Tables 2–4. 

In regards to the mean function parameters, both AADT and segment 
length had a significant positive influence on the crash frequency, which 
confirms the previous findings regarding SPFs for low-volume roadways 
(Das et al., 2019; Cook, 2010; Stamatiadis et al., 1999; Dell’Acqua and 
Russo, 2011; Zegeer et al., 1994). As opposed to the coefficients of the 
mean function, β′ s, some coefficients of the dispersion function, η′ s, were 
neither significant nor similar across the modeling approaches. As 
illustrated in Table 3, the estimates for the intercept and AADT 

Table 1 
Summary statistics of Virginia data.  

Roadway functional class Variable Min Max Average (Std. dev.) Skewness 

All NFAS roads 
(N = 2598)  

Number of crashes 0 33 2.25 (3.22) 2.83  

AADT over 5 years (vpd) 8 2347 589 (434)   
Segment length (mi) 0.1 5.73 1.37 (1.20)  

Rural minor collector 
(N = 1778)

Number of Crashes 0 33 2.75 (3.55) 2.59  

AADT over 5 years (vpd) 21 2346 584 (395)   
Segment length (miles) 0.1 5.73 1.59 (1.20)  

Rural local 
N = 455  

Number of crashes 0 17 1.32(2.16) 2.85  

AADT over 5 years (vpd) 8 2093 379 (333)   
Segment length (miles) 0.1 5.7 1.28 (1.18)  

Urban local 
(N = 365)

Number of crashes 0 14 0.98 (1.76) 3.31  

AADT over 5 years (vpd) 9 2347 874 (553)   
Segment length (miles) 0.1 4.52 0.4 (0.48)   
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coefficient of the dispersion function, η0 and η1, were not statistically 
significant at 5% significance level when using the NB-L models with 
AADT and length dependent dispersion structure. On the other hand, as 
shown in Tables 2–4, the magnitude of the coefficients of the dispersion 
function vary markedly across the models. The differences in signifi-
cance and magnitude of ηs could be partially attributed to the different 
variance structures in the models. The NB-1, NB-2, and NB-P models, 
each has a specific structure to capture the variation. Introducing the 
Lindley distribution to the NB models makes the variance structure even 
more complex since it provides the model with additional complexity 
and hence, more flexibility. Therefore, the source of variation in each 
model is different, which makes it difficult to compare the dispersion 
coefficients, individually. Moreover, as seen in Tables 3 and 4, the sign 
of the length coefficient is positive in the dispersion functions, indicating 
that the dispersion parameter, 1/ϕ, and therefore, the unobserved 
variation decreases as roadway length increases. These findings are in 
line with Hauer (2001) and Cafiso et al. (2010), indicating that shorter 

segments have higher crash frequency variances. 
Models were evaluated based on a combination of different goodness 

of fit measures. Two fully Bayesian metrics, widely applicable infor-
mation criteria (WAIC) and leave-one-out cross-validation (LOO), along 
with other commonly used metrics, were used for performance evalua-
tion and comparison purposes. The superiority of the NB-L models over 
the traditional NB models is demonstrated through all the GOF metrics. 

Among the traditional NB models, models with the less restricted 
mean-variance structure, i.e., NB-2 and NB-P showed better perfor-
mance. However, the NB-L models performed better when formulated 
with less flexible mean-variance relationships, i.e., NB1-L and NB2-L. 

All the NB parameterizations with varying dispersion parameters, 
regardless of the dispersion structure, showed superior fit compared to 
the NB parameterizations with fixed dispersion parameters. Moreover, 
as indicated in Tables 2–4, the performance measures vary when 
employing different dispersion functions. Given the results, it could be 
interpreted that the NB-L models perform better if the length-only 

Table 2 
Model estimation results (fixed dispersion structure).  

Variable NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 

Intercept (β0) − 4.07 (0.18) − 4.41 (0.20) − 4.41 (0.20) − 4.46 (0.26) − 4.47 (0.26) − 4.46 (0.26) 
Ln(AADT) (β1) 0.63 (0.03) 0.65 (0.03) 0.65 (0.03) 0.64 (0.09) 0.65 (0.09) 0.64 (0.09) 
Length (β2) 0.56 (0.01) 0.65 (0.01) 0.65 (0.02) 0.68 (0.02) 0.68 (0.02) 0.68 (0.02) 
ϕ  – 3.12 (0.25) – – 17.54 (3.10) – 
θ  – – – 1.41 (0.06) 1.41 (0.06) 1.41 (0.06) 
P – – 1.94 (0.11) – – 0.57 (0.38) 
WAIC 8296 8232 8234 7612 7640 7619 
LOO 8296 8232 8234 8112 8174 8132 
MAD 1.25 1.25 1.26 1.15 1.16 1.16 
MASE 0.55 0.56 0.56 0.57 0.57 0.56 
Log-likelihood − 4096 − 4064 − 4064 − 3290 − 3312 − 3287  

Table 3 
Model estimation results (AADT and length dependent dispersion structure).  

Variable NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 

Functional form (1): ϕi = eη0 AADTη1
i Lη2

i  

Intercept (β0) − 4.51 (0.19) − 4.51 (0.20) − 4.56 (0.20) − 4.41 (0.27) − 4.39 (0.27) − 4.50 (0.32) 
Ln(AADT) (β1) 0.72 (0.04) 0.70 (0.04) 0.70 (0.03) 0.64 (0.09) 0.65 (0.09) 0.69 (0.09) 
Length (β2) 0.51 (0.01) 0.55 (0.02) 0.60 (0.02) 0.66 (0.02) 0.63 (0.02) 0.58 (0.02) 
θ  – – – 1.39 (0.05) 1.38 (0.05) 1.39 (0.06) 
P  – – 3.48 (0.20) – – 3.91 (0.09) 
η0  4.19 (0.71) 0.20 (0.68) − 4.93 (0.96)  6.33 (4.57) 2.72 (3.07) − 2.61 (2.31) 
η1  − 0.67 (0.10) 0.07 (0.10) 1.08 (0.17) − 0.02 (0.67) 0.40 (0.45) 1.22 (0.33) 
η2  0.41 (0.12) 0.85 (0.10) 1.92 (0.17) 3.65 (1.02) 3.60 (0.64) 3.65 (0.4) 
WAIC 8150 8089 8043 7485 7497 7564 
LOO 8150 8089 8043 7978 8018 7981 
MAD 1.29 1.28 1.35 1.15 1.16 1.29 
MASE 0.55 0.55 0.56 0.56 0.55 0.55 
Log-likelihood − 4070 − 4040 − 4017 − 3284 − 3310 − 3373  

Functional form (2): ϕi = eη0 AADTη1
i Li  

Intercept (β0) − 4.54 (0.18) − 4.52 (0.19) − 4.52 (0.20) − 4.48 (0.26) − 4.51 (0.27) − 4.56 (0.28) 
Ln(AADT) (β1) 0.74 (0.03) 0.71 (0.03) 0.69 (0.03) 0.65 (0.09) 0.65 (0.09) 0.65 (0.09) 
Length (β2) 0.47 (0.01) 0.54 (0.01) 0.60 (0.02) 0.68 (0.02) 0.68 (0.02) 0.77 (0.03) 
θ  – – – 1.39 (0.05) 1.41 (0.06) 1.42 (0.07) 
P  – – 2.56 (0.10) – – 3.93 (0.06) 
η0  3.87 (0.73) − 0.05 (0.64) − 1.21 (0.66) 6.48 (11.24) 8.36 (12.67) − 5.34 (2.06) 
η1  − 0.62 (0.10) 0.11 (0.09) 0.38 (0.10) − 0.08 (1.75) − 0.29 (1.97) 1.77 (0.33) 
η2  – – – – – – 
WAIC 8170 8087 8066 7482 7489 7672 
LOO 8170 8087 8067 7981 8030 8055 
MAD 1.38 1.30 1.30 1.15 1.16 1.24 
MASE 0.57 0.55 0.56 0.57 0.57 0.64 
Log-likelihood − 4081 − 4041 − 4030 − 3274 − 3281 − 3385  
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dependent dispersion functions are used, whereas the traditional NB 
models favor the AADT and length dependent dispersion structures 
more. 

Based on the combination of GOF criteria and also the significance of 
the model coefficients, NB1-L and NB2-L with length-only dispersion 

structure (dispersion structure (3) and (4)) ranked as the best models. As 
Hauer and Bamfo (1997) suggested, the cumulative residual (CURE) plot 
was utilized to assess the model performance by directly analyzing the 
residuals. The CURE plot of a well-fitted SPF should not include an 
upward or downward trend or a noticeable periodicity. It should 

Table 4 
Model estimation results (length-only dependent dispersion structure).  

Variable NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 

Functional form (3): ϕi = Lη2
i eη0  

Intercept (β0)  − 4.09 (0.18) − 4.54 (0.20) − 4.52 (0.21) − 4.39 (0.26) − 4.47 (0.27) − 4.72 (0.30) 
Ln(AADT) (β1)  0.65 (0.04) 0.71 (0.04) 0.70 (0.04) 0.64 (0.09) 0.66 (0.09) 0.72 (0.09) 
Length (β2)  0.51 (0.01) 0.55 (0.01) 0.57 (0.02) 0.65 (0.02) 0.63 (0.02) 0.60 (0.02) 
θ  – – – 1.39 (0.05) 1.39 (0.05) 1.39 (0.05) 
P  – – 2.41 (0.14) – – 0.13 (0.12) 
η0  − 0.20 (0.07) 0.70 (0.07) 1.15 (0.17) 6.11 (1.34) 5.24 (1.06) 6.22 (0.63) 
η1  – – – – – – 

η2  0.50 (0.12) 0.83 (0.10) 0.99 (0.11) 3.75 (0.90) 3.51 (0.62) 3.80 (0.17) 
WAIC 8188 8087 8081 7482 7497 7535 
LOO 8188 8087 8081 7971 8015 7963 
MAD 1.24 1.29 1.29 1.15 1.18 1.27 
MASE 0.55 0.55 0.55 0.56 0.55 0.55 
Log-likelihood − 4090 − 4040 − 4037 − 3285 − 3313 − 3345  

Functional form (4): ϕi = Lieη0  

Intercept (β0) − 4.14 (0.17) − 4.55 (0.20) − 4.52 (0.21) − 4.48 (0.26) − 4.45 (0.26) − 4.74 (0.31) 
Ln(AADT) (β1) 0.68 (0.03) 0.72 (0.03) 0.70 (0.03) 0.64 (0.09) 0.64 (0.08) 0.68 (0.09) 
Length (β2) 0.48 (0.01) 0.53 (0.01) 0.57 (0.02) 0.68 (0.02) 0.68 (0.02) 0.72 (0.03) 
θ  – – – 1.38 (0.05) 1.39 (0.06) 1.39 (0.06) 
P  – – 2.41 (0.12) – – 3.44 (0.97) 
η0  –0.21 (0.08) 0.69 (0.06) 1.14 (0.16) 5.37 (1.48) 5.88 (1.43) 6.12 (0.81) 
η1  – – – – – – 
η2  – – – – – – 

WAIC 8201 8087 8079 7482 7481 7625 
LOO 8201 8087 8079 7981 8024 8075 
MAD 1.32 1.30 1.30 1.13 1.15 1.22 
MASE 0.57 0.55 0.55 0.56 0.57 0.60 
Log-likelihood − 4097 − 4041 − 4036 − 3275 − 3277 − 3348  

Fig. 1. CURE plots for AADT variable (dotted lines represent ±1.96 std. dev.).  
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fluctuate around zero while being in the boundary of two standard de-
viations (confidence interval). Adjusted CURE plot for the NB1-L model, 
as well as other models with the same dispersion function, are depicted 
in Fig. 1. All the CURE plots are adjusted to end at zero to make them 
comparable. In comparison to the traditional NB models, there are less 
sudden falls and rises in plots of the NB-L models. Also, the CURE plots of 
the NB-L models seem to be within the confidence intervals more often 
than their traditional counterparts. Aside from the CURE plots, the un-
adjusted cumulative residual itself could be a valid indicator of the 
predictive ability of the model. The last values of the cumulative re-
siduals (sum of all the residuals) are equal to − 235, − 298, − 339, − 3, 
− 26, − 206 for the NB-1, NB-2, NB-P, NB1-L, NB2-L, and NBP-L, 
respectively. To put it differently, cumulative residual plot of the 
NB1-L and NB2-L models converges to zero naturally; whereas, that of 
the other NB parameterizations are far away from zero. These findings 
are also in line with Shirazi et al. (2017) findings that the maximum 
deviation of the NB-L models are smaller than the NB models. 

5. Discussion 

This study aimed to develop SPFs for NFAS roads. As these roads 
commonly have low volumes and short lengths, their crash statistics 
could be characterized by specific features that make it challenging to 
accurately quantify their safety performances. As there are not many 
studies done on these particular roadway classes, there is no commonly 
agreed predictive model that performs adequately. This study compared 
the application of different count models in three different levels; (1) 
between the traditional NB model and more flexible, zero-favored NB 
models (i.e., NB-L), (2) between different forms of the mean-variance 
association through the dispersion parameter, and (3) between 
different functional forms of the dispersion parameter. 

As the results showed, regardless of the dispersion structure, all the 
GOF measures indicated that the NB-L models provide a better statistical 
fit. In the dataset analyzed in this study, 37% and 20% of the roadways 
had recorded zero and one crashes for a five year period, respectively. 
Also, dividing the crash counts by the number of years that data was 
collected, we observed that around 78% of the segments have crash 
frequencies below 0.6 crash per year. This information confirms Gee-
dipally et al. (2012) findings that the NB-L models offer superior per-
formance for datasets characterized by a large number of zeros. Also, the 
results are in line with Shirazi et al. (2017), which showed that for crash 
data with skewness higher than 1.92 (2.83 in this study) the NB-L model 
performs better. 

For both groups of traditional NB and NB-L models, different mean- 
variance structures were examined as well. Similar to the results of 
Wang et al. (2019), the NB-P and NB-2 favored the NB-1 model, regardless 
of the dispersion structure. It was not unexpected since the NB-1 model 
introduces a less flexible variance structure (linear mean-variance rela-
tionship) to the model. The NB-P model performed slightly better than 
NB-2 due to the more flexibility through the parameter P. However, the 
improvements were negligible since the estimated P parameter in the 
NB-P model was close to 2 in the most cases, which made the NB-P model 
similar to the NB-2 model (e.g., NB-P with functional forms (2), (3), and 
(4)). A different pattern was observed in the NB-L models. Compared to 
the NBP-L, the NB1-L and NB2-L appeared to be better models in terms of 
almost all the performance measures. These findings showed that even 
though the NBP-L model offers a more flexible variance structure and 
more ability to fit to complex data, it might not always be the best choice. 
In other words, the choice of the variance structure is not only dependent 
upon the dataset being analyzed, but also depends on the formulation of 
the NB model. These results suggest that, even though the mixed NB-L 
distribution provides the model with another source of variation, the 
variance structure still matters and should be considered in the SPF 
development process. 

Finally, the effect of using different dispersion structures was 
examined. All the models with varying dispersion parameter 

outperformed the models with fixed dispersion parameter. These find-
ings support the results of Miranda-Moreno et al. (2005) and Lord and 
Park (2008) that the varying dispersion parameter can better capture the 
structured variations observed in the dataset. The traditional NB models 
showed better performance when formulated by the AADT and length 
dependent dispersion functions (e.g., dispersion functions (1) and (2)); 
however, the NB-L models favored the length-only dependent dispersion 
functions more. Having excluded models with insignificant coefficients, 
dispersion function (1), dependent upon both length and AADT, and 
dispersion function (3), dependent on length only, provided better sta-
tistical fit in the traditional NB models and the NB-L models, respec-
tively. According to the results, the following conclusions could be 
obtained. First, the functional form of the dispersion parameter can 
significantly affect the model performance. This has been documented in 
the literature that applying different dispersion functions to the same 
model lead to different model performances (Geedipally et al., 2009; 
Cafiso et al., 2010). However, the improvements in the traditional NB 
models were more significant than the NB-L models. It was expected 
since the NB-L models are typically characterized by smaller 
over-dispersion parameter and hence, are less sensitive to the choice of 
the dispersion structure. Second, each NB parameterization calls for its 
own appropriate dispersion function. This means that if, for instance, a 
NB-2 model is enhanced by using a specific dispersion function, a NB-L 
model is not essentially improved by using the same dispersion function. 
This study also found that, within the traditional NB models, NB-1 shows 
more sensitivity to the dispersion function choice compared to the NB-2 
and NB-P. This is probably due to the less flexible variance structure of 
the NB-1 compared to the other two models. So, providing it with an 
appropriate dispersion function could highly affect its ability to account 
for the data heterogeneity. These results support Wang et al. (2019) 
findings that more flexible variance structures in the NB models (e.g., 
NB2 and NB-P) can even capture the variation in the dispersion 
parameter. Therefore, these models are less sensitive to the dispersion 
structure. So, it can be concluded that researchers should choose the 
dispersion structure for each dataset (Geedipally et al., 2009), as well as 
for each parameterization of the crash-frequency model. 

This study used a combination of metrics to evaluate and compare 
the models. Median absolute deviation (MAD) computes the average 
absolute difference between the observed and predicted values. Mean 
absolute scaled error (MASE) is a scale-free metric that normalizes the 
MAD by the average error. However, all these metrics are the measures 
of accuracy of the prediction. To consider the prediction accuracy and 
complexity of the model simultaneously, a cross-validation and an in-
formation criteria based method were used. These methods estimate the 
out of sample accuracy using within sample fits (Vehtari et al., 2017). 
Leave-one-out cross-validation assesses the predictive accuracy of the 
model by estimating the prediction error for the sample i without using it 
to train the model. However, it requires re-fitting the model N times (N is 
the sample size) to calculate the predictive accuracy. In the method 
proposed by Vehtari et al. (2017), they approximated the underlying 
process by using the sample draws from the full posterior distribution, 
p(θ|y), which is the typical outcome of any Bayesian analysis. Conse-
quently, the leave-on-out cross-validation could be approximated by 
fitting the model once. 

Also, WAIC appeared to be a more robust metric compared to the 
Deviance Information Criteria (DIC) in the Bayesian framework (Wata-
nabe and Opper, 2010). As Geedipally et al. (2014) mentioned, 
regardless of the similarity of the estimates among the NB models, 
different parameterization of the model, especially different definitions 
of the likelihood functions in the hierarchical models, lead to different 
DIC values. Therefore, considering a fully Bayesian alternative metric 
seems essential, especially when both likelihood function and dispersion 
structure vary across the models. WAIC makes use of the entire posterior 
distribution and also is invariant to re-parameterization of the model 
(Vehtari et al., 2017). In general, all the information criteria approaches 
interpret the effective number of parameters as a measure of the model 
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complexity. Although both DIC and WAIC use a variance-based 
computation to estimate the effective number of parameters (Gelman 
et al., 2014), WAIC produces more reliable results as it calculates the 
variance for each point separately (Vehtari et al., 2017). Both LOO and 
WAIC showed superiority over the traditional metrics such as AIC and 
DIC; however, they are computationally intensive and costly. In this 
study, we extracted N × S log-likelihood matrix, (where S is the number 
of simulation, and N is the number of observations) and then used the R 
package, called “loo” and set up by Vehtari et al. (2018), to compute 
LOO and WAIC. 

Finally, after excluding models with insignificant estimates, the NB1- 
L and NB2-L models with length-only dependent dispersion function 
outranked the others in terms of almost all the metrics. However, within 
the NB-L models, there was some discrepancy. NB2-L showed better 
performance in terms of WAIC, and MASE, whereas NB1-L outperformed 
the others in terms of LOO and MAD. These findings justify the use of 
different metrics for evaluation and comparison purposes. 

6. Summary and conclusion 

NFAS roads comprise a significant part of the roadway network; 
however, not much research efforts have gone toward accurately eval-
uating the safety of these roadways. As these roadways are characterized 
by different features as major facilities (e.g., highways, arterials, etc.), 
there is a need to improve the currently used models to accurately 
quantify the safety issues associated with them. The primary objective of 
this study was to evaluate the application of different parameterizations 
of the negative binomial models in the SPF development of NFAS 
roadways. In the first level, both traditional NB and zero-favored NB (i. 
e., NB-L model) were considered to model the crash counts. Then, for 
each model, three different variance structures were considered, leading 
to six different NB parameterizations. Finally, for each of the six crash- 
frequency models, five different dispersion structures were employed. 
Using crash data, roadway inventory, and traffic volume data from 
2014-2018 in Virginia, this study showed that the NB-L models fit better 
than the traditional NB models. Within the NB-L models also the NB1-L 
and NB2-L models showed better fits. This study also found that the 
variance and dispersion structure choices are highly dependent upon the 
NB parameterization. As opposed to the traditional NB models, the NB-L 
models performed better when using the length-only dependent 
dispersion function. All the models were evaluated using various GOF 
measures, including two recently documented fully Bayesian metrics, 
WAIC and LOO. This study provides additional insight into the choice of 
the predictive model to evaluate the safety performance of NFAS road-
ways. The advanced models developed in this study could contribute to 
the betterment of safety evaluation of these roadways and any other 
crash dataset that requires a more flexible modeling structure. This 
study showed that a reasonably chosen variance and dispersion struc-
ture can effectively enhance the count models (even the more advanced 
models which have been proven that outperform the traditional models) 
leading to better model performances, more accurate estimates, and 
hence more reliable decision making. Using a more detailed dataset and 
the inclusion of other traffic-related variables could further enhance the 
model performance. This study did not separate different categories of 
NFAS roadways. Further work needs to be done to develop SPF for each 
functional class individually. Also, separating the crash data by severity 
level (e.g., KABCO, KAB, etc.) and crash type would further improve the 
predictive accuracy of the model. 
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